Publications & Projects

A selection of recent TU/e publications and projects in the field of integrated photonics.



  1. Fadaly, E.M.T., Dijkstra, A., Suckert, J.R. et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 580, 205–209 (2020). www.doi.org/10.1038/s41586-020-2150-y

Nature Communications

  1. van Hees, Y.L.W., van de Meugheuvel, P., Koopmans, B. et al. Deterministic all-optical magnetization writing facilitated by non-local transfer of spin angular momentum. Nat Commun 11: 3835 (2020). www.doi.org/10.1038/s41467-020-17676-6
  2. Liu, T., Pagliano, F., van Veldhoven, R. et al. Integrated nano-optomechanical displacement sensor with ultrawide optical bandwidth. Nat Commun 11: 2407 (2020). www.doi.org/10.1038/s41467-020-16269-7

ACS Materials Letters

  1. Balasubramanyam, S., Merkx, M.J.M., Verheijen, M.A. et al. Area-Selective Atomic Layer Deposition of Two-Dimensional WS2 Nanolayers. ACS Materials Lett. 2(5), 511-518 (2020). www.doi.org/10.1021/acsmaterialslett.0c00093

Nano Letters

  1. Godiksen, R.H., Wang S., Raziman T. V et al. Correlated Exciton Fluctuations in a Two-Dimensional Semiconductor on a Metal Nano Letters 20(7), 4829-4836 (2020). www.doi.org/10.1021/acs.nanolett.0c00756

Journal of Physical Chemistry Letters

  1. Wang, Y., Horacek, M., & Zijlstra, P. Strong Plasmon Enhancement of the Saturation Photon Count Rate of Single Molecules. J. Phys. Chem. Lett. 11(5), 1962-1969 (2020). www.doi.org/10.1021/acs.jpclett.0c00155

ACS Photonics

  1. Castellanos, G.W., Murai, S., Raziman, T.V. et al. Exciton-Polaritons with Magnetic and Electric Character in All-Dielectric Metasurfaces. ACS Photonics 7(5), 1226-1234 (2020). www.doi.org/10.1021/acsphotonics.0c00063

Advanced Optical Materials

  1. Mohammed, M.A., Melskens, J., Stabile, R. et al. Metastable Refractive Index Manipulation in Hydrogenated Amorphous Silicon for Reconfigurable Photonics. Advanced Optical Materials 8(6) (2020). www.doi.org/10.1002/adom.201901680
  2. Mohammed, M.A., Sproncken, C.C.M., Gumí‐Audenis, B. et al. Reversibly Programmable Photonics via Responsive Polyelectrolyte Multilayer Cladding. Advanced Optical Materials 8(16) (2020). www.doi.org/10.1002/adom.202000325


  1. Horacek, M., Engels, D. J., & Zijlstra, P. Dynamic single-molecule counting for the quantification and optimization of nanoparticle functionalization protocols. Nanoscale 12, 4128-4136 (2020). www.doi.org/10.1039/C9NR10218C

Journal of Lightwave Technology

  1. Rommel, S., Dodane, D., Grivas, E. et al. Towards a Scaleable 5G Fronthaul: Analog Radio-over-Fiber and Space Division Multiplexing. Journal of Lightwave Technology 38(19), 5412-5422 (2020). www.doi.org/10.1109/JLT.2020.3004416
  2. Andreou, S., Williams, K. & Bente, E. Electro-Optic Tuning of a Monolithically Integrated Widely Tuneable InP Laser With Free-Running and Stabilized Operation. Journal of Lightwave Technology 38(7), 1887-1894 (2020). www.doi.org/10.1109/JLT.2019.2952466


  1. Sharma, A., Mahlouji, R., Wu, L. et al. Large area, patterned growth of 2D MoS2 and lateral MoS2–WS2 heterostructures for nano and opto-electronic applications. Nanotechnology 31(25) (2020). www.doi.org/10.1088/1361-6528/ab7593

Philosophical Transactions of the Royal Society A

  1. Koonen, A.M.J., Mekonnen, K.A., Cao, Z. et al. Ultra-high-capacity wireless communication by means of steered narrow optical beams. Philosophical Trans. Royal Soc. A 378(2169) (2020). www.doi.org/10.1098/rsta.2019.0192

Journal of Applied Science

  1. Pérez Santacruz, J., Rommel, S., Johannsen, U. et al. Candidate Waveforms for ARoF in Beyond 5G. Appl. Sci. 10(11) (2020). www.doi.org/10.3390/app10113891

Journal of Quantum Electronics

  1. van der Tol, J.J.G.M., Jiao, Y., van Engelen, J. P. et al. InP membrane on silicon (IMOS) photonics. IEEE Journal of Quantum Electronics 56(1), 1-7, (2020). www.doi.org/10.1109/JQE.2019.2953296


FreeSense (NWO HTSM) (Y. Jiao, E. Bente)

  • Fully integrated optical metrology sensors for high-end semiconductor manufacturing

CHANSON (ERC starting grant) (A.G. Curto)

  • Chiral semiconductor nanophotonics for ultraresolved molecular sensing

Scalable lab-on-fiber optical sensing (NWO-Open Technology Program) (A. Fiore and P. Zijlstra)

  • Fiber-tip optical sensors for industrial applications

Time-resolved THz near-field microscopy (NWO-take off) (J. Gomez Rivas)

  • An instrument for the contact-free and high-resolution mapping of the conductivity of semiconductors

From the bottom-up (ERC Starting Grant) (A.J.M. Mackus)

  • A physico-chemical approach towards 3D nanostructures with atomic-scale control

KPN Smart 2+ (Eindhoven Engine) (C. Okonkwo)

  • Prototype hybrid wireless communication system. Design, implementation and validation of a hybrid system demonstrator setup which combines the strengths of mm-wave and optical wireless communication technologies.

PhotonicLEAP (H2020 ICT-36-2020) (S. Latkowski, C. Okonkwo)

  • The PhotonicLEAP will develop truly disruptive production technology using advanced glass packaging materials and fully automated wafer-level packaging and test processes.

Inspire (H2020) (K. Williams, Y. Jiao)

  • Transfer printing of InP PICs onto larger area silicon nitride PIC wafers

PhotonHub Europe (H2020) (K. Williams, K. Panina)

  • PhotonHub Europe will establish a single pan-EU Photonics Innovation Hub which integrates the best-in-class photonics technologies, facilities, expertise and experience of 53 partners from all over Europe

Picaboo (H2020 RIA) (W. Yao, J. v. d. Tol, K. Williams)

  • PICaboo targets to develop novel building blocks based on the generic foundry model that will transform the optical metro and access networks in terms of speed, footprint, power consumption and cost.

BRAINE (H2020-ECSEL) (I. Tafur Monroy, B. Cimoli, J. Barros Carvalho, S. Rommel)

  • BRAINE approach is to build a seamless Edge MicroDataCenter interlinked with AI enabled network interface cards. TU/e contributes in BRAINE with expertise on 5G systems and integration with quantum secure communications.

Opto Silicon (H2020, FETOPEN) (J.E.M. Haverkort, E.P.A.M. Bakkers)

  • Opto Silicon aims to integrate light-emitting devices based on hexagonal SiGe with existing Si electronics and Si-photonics circuitry. In addition, we aim to demonstrate lasing, optical amplification, modulation and detection capabilities with this new material.