Publications & projects

A selection of recent TU/e publications and projects in the field of integrated photonics.

Publications

Advanced Photonics Research

  • J. Ji, B. Zhou, P. Bøggild, S. Al‐Daffaie, P.U. Jepsen, J. Gomez Rivas. Robustness and Tunability of SymmetricProtected Bound States in the Continuums and QuasiBound States in the Continuums in Terahertz Metasurfaces. Advanced Photonics Research, 2400020. https://doi.org/10.1002/adpr.202400020


ACS Nano

  • Mark D. Thomson, Florian Ludwig, Jakob Holstein, Reiam Al-Mudhafar, Shihab Al-Daffaie, and Hartmut G. Roskos. Coherent Terahertz Detection via Ultrafast Dynamics of Hot Dirac Fermions in Graphene. ACS Nano 2024 18 (6), 4765-4774. https://doi.org/10.1021/acsnano.3c08731


Nature Communications

  • Peeters, W. H. J., van Lange, V. T., Belabbes, A., van Hemert, M. C., Jansen, M. M., Farina, R., van Tilburg, M. A. J., Verheijen, M. A., Botti, S., Bechstedt, F., Haverkort, J. E. M., & Bakkers, E. P. A. M. (2024). Direct bandgap quantum wells in hexagonal Silicon Germanium. Nature Communications, 15(1), Article 5252. https://doi.org/10.1038/
  • Hendriks, F., Rojas-Lopez, R. R., Koopmans, B., & Guimarães, M. H. D. (2024). Electric control of optically-induced magnetization dynamics in a van der Waals ferromagnetic semiconductor.Nature Communications, 15(1), Article 1298. https://doi.org/10.1038/s41467-024-45623-2


Science Advances

  • Mehew, J. D., Merino, R. L., Ishizuka, H., Block, A., Mérida, J. D., Carlón, A. D., Watanabe, K., Taniguchi, T., Levitov, L. S., Efetov, D. K., & Tielrooij, K.-J. (2024). Ultrafast Umklapp-assisted electron-phonon cooling in magic-angle twisted bilayer graphene.Science Advances, 10(6), Article eadj1361. https://doi.org/10.1126/sciadv.adj1361


Nano Letters

  • Zhai, Y., Xu, C., Zhang, Z., Li, P., Murai, S., Rivas, J. G., Li, X., & Wang, S. (2024). Efficient Redirection of Trapped Broad-Band Fluorescence from Substrates into Free Space Using c-Si Metasurfaces. Nano Letters, 24(36), 11311-11318. https://doi.org/10.1021/acs.nanolett.4c03294


Optica

  • Hendriks, A. L., Rabelink, D., Dolci, M., Dreverman, P., Cano-Velázquez, M. S., Picelli, L., Veldhoven, R. P. J. V., Zijlstra, P., Verhagen, E., & Fiore, A. (2024). Detecting single nanoparticles using fiber-tip nanophotonics. Optica, 11(4), 512-518. https://doi.org/10.1364/OPTICA.516575


Photonics Research

  • Lei Cao, Fanqi Meng, Esra Özdemir, Yannik Loth, Merle Richter, Anna Katharina Wigger, Maira Beatriz Pérez Sosa, Alaa Jabbar Jumaah, Shihab Al-Daffaie, Peter Haring Bolívar, and Hartmut G. Roskos. Interdigitated terahertz metamaterial sensors: design with the dielectric perturbation theory. Photonics Research 12 (6), 1115-1128. https://opg.optica.org/prj/fulltext.cfm?uri=prj-12-6-1115&id=551076


Nanophotonics


ACS Photonics

  • Matěj Hejda, Weikang Zhang, Qusay Raghib Ali Al-Taai, Ekaterina Malysheva, Dafydd Owen-Newns, José M. L. Figueiredo, Bruno Romeira, Joshua Robertson, Victor Dolores-Calzadilla, Edward Wasige, and Antonio Hurtado. Programmable Optical Synaptic Linking of Neuromorphic Photonic-Electronic RTD Spiking Circuits. ACS Photonics 2024 11 (10), 4279-4287, 2024. https://doi.org/10.1021/acsphotonics.4c01199
  • Pura, J. L., Castillo López de Larrinzar, B., Liang, M., García-Martín, A., Gómez Rivas, J., & Sánchez-Gil, J. A. (in press). Superchiral Light Emerging from Bound States in the Continuum in Metasurfaces of Si Nanorod Dimers. ACS Photonics. https://doi.org/10.1021/acsphotonics.4c00938
  • van Lange, V. T., Dijkstra, A., Fadaly, E. M. T., Peeters, W. H. J., van Tilburg, M. A. J., Bakkers, E. P. A. M., Bechstedt, F., Finley, J. J., & Haverkort, J. E. M. (2024). Nanosecond Carrier Lifetime of Hexagonal Ge. ACS Photonics, 11, 4258-4267. https://doi.org/10.1021/acsphotonics.4c01135


APL Photonics

  • Zhang, L., Gagino, M., Millán Mejía, A. J., Williams, K. A., & Dolores Calzadilla, V. (2024). Directly modulated FMCW tunable laser with highly linear frequency chirp and narrow linewidth. APL Photonics, 9(10), Article 106101. https://doi.org/10.1063/5.0222059
  • Wang, Y., Jiao, Y., & Williams, K. (2024). Scaling photonic integrated circuits with InP technology: A perspective.APL Photonics, 9(5), Article 050902. https://doi.org/10.1063/5.0200861


APL Materials

  • Hintermayr, J., van Kuppevelt, P. M. P., & Koopmans, B. (2024). Coherent control of terahertz-scale spin resonances using optical spin–orbit torques.APL Materials, 12(6), Article 061108. https://doi.org/10.1063/5.0205962


Neuromorphic Computing and Engineering

  • Puts, L., Lenstra, D., Williams, K. A., & Yao, W. (2024). Phase-space analysis of a two-section InP laser as an all-optical spiking neuron: dependency on control and design parameters. Neuromorphic Computing and Engineering, 4(2), Article 024017. https://doi.org/10.1088/2634-4386/ad575e


Communications Physics


ACS Applied Nanomaterials

  • Rovaris, F., Peeters, W. H. J., Marzegalli, A., Glas, F., Vincent, L., Miglio, L., Bakkers, E. P. A. M., Verheijen, M. A., & Scalise, E. (2024). 2H-Si/Ge for Group-IV Photonics: on the Origin of Extended Defects in Core-Shell Nanowires. ACS Applied Nano Materials, 7(8), 9396–9402. https://doi.org/10.1021/acsanm.4c00835
  • Berghuis, W.-J. H., van Tilburg, M. A. J., Peeters, W. H. J., van Lange, V. T., Farina, R., Fadaly, E., Renirie, E., Theeuwes, R. J., Verheijen, M. A., Macco, B., Bakkers, E. P. A. M., Haverkort, J. E. M., & Kessels, W. M. M. (2024). Low Surface Recombination in Hexagonal SiGe Alloy Nanowires: Implications for SiGe-Based Nanolasers.ACS Applied Nano Materials, 7(2), 2343-2351. https://doi.org/10.1021/acsanm.3c05770


Journal of Optical Communications and Networking

  • Xia, S., Hu, Z., Rombouts, M., Santana, H., Wang, Y., Rasoulzadehzali, A., Raz, O., & Calabretta, N. (2024). Photonic WDM switches architecture for multi-band optical networks. Journal of Optical Communications and Networking, 16(8), D18-D28. Article 522806. https://doi.org/10.1364/JOCN.522806
  • Puttnam, B. J., Luis, R. S., Orsuti, D., Rademacher, G., Di Sciullo, G., van den Hout, M., Sakaguchi, J., Antonelli, C., Okonkwo, C., Palmieri, L., & Furukawa, H. (2024). Experimental demonstration of a multi-core fiber seeded comb optical network (MCF-SCON). Journal of Optical Communications and Networking, 16(7), C69-C75. https://doi.org/10.1364/JOCN.517057


Journal of Physical Chemistry Letters

  • Tezsevin, I., Deijkers, J. H., Merkx, M. J. M., Kessels, W. M. M., Sandoval, T. E., & Mackus, A. J. M. (2024). The Consequences of Random Sequential Adsorption for the Precursor Packing and Growth-Per-Cycle of Atomic Layer Deposition Processes. Journal of Physical Chemistry Letters, 15(29), 7496-7501. https://doi.org/10.1021/acs.jpclett.4c01632


Journal of Lightwave Technology

  • Rasoulzadehzali, A., Tessema, N. M., Kleijn, S., Augustin, L. M., Stabile, R., & Calabretta, N. (2024). Assessment of Low Polarization Dependent Multicast and Select Switch Based on Bulk SOA for Data Center Application. Journal of Lightwave Technology, 42(2), 780-792. Article 10253960. https://doi.org/10.1109/JLT.2023.3316357
  • Di Sciullo, G., Shaji, D. A., Van Den Hout, M., Rademacher, G., Luis, R. S., Puttnam, B. J., Fontaine, N. K., Ryf, R., Chen, H., Mazur, M., Neilson, D. T., Sillard, P., Achten, F., Sakaguchi, J., Okonkwo, C., Mecozzi, A., Antonelli, C., & Furukawa, H. (in press). Enhancing Long-Haul 15-Mode Fiber Performance: Mode Permutation for Reduced Modal Dispersion. Journal of Lightwave Technology. https://doi.org/10.1109/JLT.2024.3453553


Physical Review Materials

  • Peeters, W. H. J., Vettori, M., Fadaly, E. M. T., Danescu, A., Mao, C., Verheijen, M. A., & Bakkers, E. P. A. M. (2024). Onset of uncontrolled polytypism during the Au-catalyzed growth of wurtzite GaAs nanowires. Physical Review Materials, 8(2), Article L020401. https://doi.org/10.1103/PhysRevMaterials.8.L020401


Physical Review B

  • Verdelli, F., Baldi, A., & Gómez Rivas, J. (2024). Motional narrowing of molecular vibrations strongly coupled to surface lattice resonances. Physical Review B, 109(17), Article 174305. https://doi.org/10.1103/PhysRevB.109.174305


IEEE Access

  • Abdi, S., Zozulia, A., Bolk, J., Geluk, E. J., Williams, K., & Jiao, Y. (2024). High-Precision Mapping and Analysis of Wafer-Scale Distortions in InP Membranes to Si 3D Integration. IEEE Access, 12, 92215-92226. Article 10577983. https://doi.org/10.1109/ACCESS.2024.3421283


Scientific Reports

  • Gagino, M., Millán Mejía, A. J., Augustin, L. M., Williams, K. A., Bente, E. A. J. M., & Dolores Calzadilla, V. (2024). Integrated optical phased array with on-chip amplification enabling programmable beam shaping.Scientific Reports, 14, Article 9590. https://doi.org/10.1038/s41598-024-60204-5


Applied Physics Letters

  • Schouten, M. F., van Tilburg, M. A. J., van Lange, V. T., Peeters, W. H. J., Farina, R., Jansen, M. M., Vettori, M., Bakkers, E. P. A. M., & Haverkort, J. E. M. (2024). Carrier cooling in direct bandgap hexagonal silicon-germanium nanowires.Applied Physics Letters, 125(11), Article 112106. https://doi.org/10.1063/5.0211035
  • Kabir, T., Wang, Y., Tondini, S., Williams, K. A., Jiao, Y., & Heck, M. J. R. (2024). Compact widely tunable laser integrated on an indium phosphide membrane platform.Applied Physics Letters, 125(12), Article 121110. https://doi.org/10.1063/5.0226125


Optics Express

  • Wang, X., Shi, B., Liu, L., Feyisa, D. W., Liu, J., Zhang, S., Ye, Y., Liu, Y., & Stabile, R. (2024). Non-invasive characterization of cascaded SOAs on InP-based photonic integrated circuits. Optics Express, 32(20), 36021-36030. https://doi.org/10.1364/OE.534638
  • van Loon, T., Liang, M., Delplace, T., Maes, B., Murai, S., Zijlstra, P., & Gómez Rivas, J. (2024). Refractive index sensing using quasi-bound states in the continuum in silicon metasurfaces.Optics Express, 32(8), 14289-14299. https://doi.org/10.1364/OE.514787

Projects

ASPEA: Atomic-Scale Processing Equipment for the Ångstrom Era (TKI-HTSM)


Bright Chips (ERC Synergy)

  • Bright Chips is working towards a light-emitting hexagonal SiGe as a new platform for integrating photonics and electronics together with TU Munich and Twente University. This project is a truly multidisciplinary project which combines the worlds of materials science, photonics, and electronics. Each member of the ‘Bright Chips’ project team will focus on one of these three topics.


TeraIBs: Doctoral Training Network for Terahertz Integrated Biosensing from molecular, vesicular to the cellular and tissue level (MSCA-DN)

  • TeralBs project aims to develop a radically new technology based on THz radiation for biomedical detection and diagnosis, based on a team of Doctoral Candidates (DCs) with the necessary in-depth background in devices and systems, spectroscopic techniques, and biomedical measurement knowledge using THz radiation. All DC projects are built around three major technological challenges of THz technology for biomedical applications: the development of cost-effective, sensitive, integrated THz technologies; the exploitation of the high specificity multi-analyte capabilities of THz; and the development of flexible and reliable THz analytical instrumentation and robust information extraction.


Move2THz: Sustainable Indium Phosphide (InP) platform and ecosystem upscaling, enabling future mass market (sub-)THz applications

  • Move2THz is a ChipsJU project focusing on developing III-V material growth, device development, and circuit demonstration on Si substrates containing InP templates (so-called InPoSi substrates). This technology has the promise of upscaling beyond 6-inch InP wafer size and enables 200-300mm wafer scale growth and processing of InP devices. InP expertise on InP transistors, photonics, and heterogeneous integration gather in this consortium to build beyond-state-of-the-art systems for THz applications. TU/e, together with SMART Photonics, is responsible for the technology and PIC demonstration on Si.
  • https://www.move2thz.eu/


PHACTORY: PhotonHub Factory for Next-Generation Photonics Innovation Support
to maximize European Industrial Competitiveness and Technological Sovereignty
 (HORIZON EUROPE) 


  •   The strategic mission of the PHACTORY project is to establish a streamlined and open virtual factory facilitating cross-border deep innovation using core photonics technologies tailored to the acceleration of both the technology readiness levels (TRL) and investment readiness levels (IRL) of European industry. The primary aim is to enhance the penetration of photonics into multiple end-user industries, with a specific focus on SMEs including start-ups and scale-ups, promoting business, investment and employment growth, and contributing to the maturing of strategic value chains in key photonics-driven sectors to strengthen European competitiveness and technological sovereignty.